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New research monograph (April 2017)
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What I plan to accomplish in this talk

Spaceborne SAR is a vast area:
I Any attempt to do a broad overview will be superficial.

Instead, I would like to:
I Present some recent findings that are unexpected/intriguing;
I Identify some common misconceptions in the SAR literature.

Three subjects:
I Doppler effects and the start-stop approximation;
I Ionospheric turbulence;
I Interpretation of targets.
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Main idea of SAR

Coherent overhead imaging by means of microwaves:
I Typically, P-band to X-band (1 meter to centimeters wavelengh).

A viable supplement to aerial and space photography.
To enable imaging, target must be in the near field⇒ instrument
size must be very large — unrealistic for actual physical antennas.
Synthetic array is a set of successive locations of one antenna:

I Fraunhofer length of the antenna 2D2

λ � that of the array (aperture);
I Target in the far field of the antenna is in the near field of the array.
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Introduction: monostatic broadside stripmap SAR
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Conventional SAR data inversion
Interrogating waveforms — linear chirps:

P(t) = A(t)e−iω0t, where A(t) = χτ (t)e−iαt2 .

ω0 — central carrier frequency, τ — duration, α = B
2τ — chirp rate.

Incident field — retarded potential from the antenna at x ∈ R3:

u(0)(t, z) =
1

4π
P(t − |z − x|/c)

|z − x|
.

Scattered field for monostatic imaging (ν — ground reflectivity that
also “absorbs” the geometric factors):

u(1)(t,x) ≈
∫
ν(z)P (t − 2|x− z|/c) dz.

Obtained with the help of the first Born approximation.
SAR data inversion: reconstruct ν(z) from the given u(1)(t,x).
The inversion is done in two stages:

I Application of the matched filter (range reconstruction);
I Summation along the synthetic array (azimuthal reconstruction).
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Generalized ambiguity function (GAF)

Matched filter (Ry ≡ |y − x|, Rz ≡ |z − x|):

Ix(y) =

∫
χ

P(t − 2Ry/c)u(1)(t,x) dt

=

∫
dz ν(z)

∫
χ

dt P(t − 2Ry/c)P(t − 2Rz/c)︸ ︷︷ ︸
Wx(y,z) — PSF

.

Synthetic aperture (determined by the antenna radiation pattern):

I(y) =
∑

n

Ixn(y) =
∑

n

∫
Wxn(y, z)ν(z)dz

=

∫ [∑
n

Wxn(y, z)
]
ν(z) dz =

∫
W(y, z)ν(z) dz = W ∗ ν.

W(y, z) — GAF (or imaging kernel) — convenient for analysis.
I Actual processing done for the entire dataset rather than for each y.
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Factorization of the GAF and resolution analysis

Factorized form of the GAF:

W(y, z) = W(y−z) ≈ τsinc
(B

c
(y2−z2) sin θ

)
Nsinc

(k0LSA

R
(y1−z1)

)
.

For narrow-band pulses the factorization error is small: O( B
ω0

).
W(y − z) 6= δ(y − z), so the imaging system is not ideal.
Resolution — semi-width of the main lobe of the sinc ( · ):

I Azimuthal: ∆A =
πR

k0LSA
=

πRc
ω0LSA

; Range: ∆R =
πc
B

.

What would it be with no phase modulation?
The range resolution would be > the length of the pulse τc.

The actual range resolution is better by a factor of
τc
∆R

=
Bτ
π

.

Bτ
2π

is the compression ratio of the chirp (or TBP); must be large.
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Start-stop approximation and its shortcomings

The antenna is assumed motionless during the time of emission
and reception of a given signal:

I Then, it moves to the next sending/receiving location.

This assumption simplifies the analysis yet neglects two important
effects:

I Displacement of the antenna during the pulse round-trip;
I Doppler frequency shift.

The corresponding image distortions may be substantial, even
though typically v

c � 1.
Under the start-stop approximation, there may be no physical
Doppler effect, because the velocity is considered zero.

I Yet azimuthal reconstruction is often attributed to the Doppler effect.
I This is a frequently encountered mistake in the literature.
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Schematic for the analysis of antenna motion
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Waves from moving sources

Analysis uses Lorentz transforms or Liénard-Wiechert potentials.
Incident field in the original coordinates (where r = |x− z|):

u(0)(t, z) ≈ 1
4π

P
((

t − r
c

) (
1 + v

c cos γz
))

r
.

Linear Doppler frequency shift can be obtained by taking ∂
∂t .

The scattered field in the original coordinates:

u(1)(t,x′) ≈
∫
ν(z)P

(
t
(

1 + 2
v

c
cos γz

)
− 2r

c

(
1 +

v

c
cos γz

))
dz.

The receiving location x′ is not the same as the emitting locationx.
Two different factors multiplying the time t and the retarded time 2r

c .
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Data inversion in the presence of antenna motion

Not a fully relativistic treatment; the terms O(v
2

c2 ) are neglected.
Matched filter that accounts for the antenna motion:

Ix(y) =

∫
dzν(z)

∫
χ

dtP
(

t
(

1 + 2
v

c
cos γy

)
− 2Ry

c

(
1 +

v

c
cos γy

))
· P
(

t
(

1 + 2
v

c
cos γz

)
− 2Rz

c

(
1 +

v

c
cos γz

))
.

A simple correction; only geometric info is required.
Summation along the synthetic array:

I(y) =
∑

n

Ixn(y) =
∑

n

∫
Wxn(y, z)ν(z)dz

=

∫ [∑
n

Wxn(y, z)
]
ν(z) dz =

∫
W(y, z)ν(z) dz = W ∗ ν.
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The GAF in the presence of antenna motion

The azimuthal factor:

WA(y, z) ≈ Nsinc
(

k0LSA

R

(
(y1 − z1)︸ ︷︷ ︸

original

+ 2
L(y2 − z2)

R
v

c︸ ︷︷ ︸
due to Doppler

))
.

The range factor:

WR(y, z) ≈ τsinc
(

B
c

(
(y2 − z2) sin θ︸ ︷︷ ︸

original

− (y1 − z1)
v

c

typically O(1)︷ ︸︸ ︷(
1 +

ω0

αR
c
2

)
︸ ︷︷ ︸

due to Doppler

))
.

“Cross-contamination” is small; the resolution remains unaffected.
Factorization error is still O( B

ω0
):

max |W −WRWA|
max |WRWA|

.
B

8ω0

π

∆A

∣∣∣∣(y1 − z1) +
L(y2 − z2)

R
v

c

(
4 +

ω0c
2αR

)∣∣∣∣.
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SAR with no filter correction: the real start-stop

Plain non-corrected filter applied to Doppler-based propagator:

Ix(y) =

∫
dzν(z)

∫
χ

dtP
(

t − 2Ry

c

)
· P
(

t
(

1 + 2
v

c
cos γz

)
− 2Rz

c

(
1 +

v

c
cos γz

))
.

The factors WR and WA change insignificantly. Yet they cannot be
directly used for resolution analysis due to the factorization error:

max |W −WRWA|
max |WRWA|

.
B

8ω0

π

∆A

∣∣∣∣(y1 − z1) +
v

c
R
(

1 +
ω0

αR
c
2

)∣∣∣∣.
The term ω0

αR
c
2 may become large if, e.g., α is small.

Ignoring this error may seriously underestimate image distortions:
I FMCW SAR may be particularly prone to deterioration.
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ViSAR project by DARPA

A SAR instrument to operate in the EHF band (at 235GHz).
FMCW interrogating waveforms due to hardware limitations:

I FMCW = Frequency Modulated Continuous Wave.
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Doppler interpretation of azimuthal reconstruction

Azimuthal reconstruction is often erroneously attributed to the
physical Doppler effect, which does not exist under start-stop.
Can one think of a meaningful counterpart?
Linear variation of the instantaneous frequency along the chirp
2αt = ω(t)− ω0 yields the range factor of the GAF:

WR(y, z) =

∫
χ

e−iα4t(Rc
y−Rc

z)/cdt =

∫
χ

e−2i(ω(t)−ω0)(Rc
y−Rc

z)/cdt.

In the azimuthal factor, there is a linear variation of the local

wavenumber along the array, k(n) = k0
LSAn
RN

:

WA(y, z) =
∑

n
e2ik0

LSAn
RN (y1−z1) =

∑
n

e2ik(n)(y1−z1).

Can be thought of as a chirp of length LSA in azimuth.
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Doppler effect in slow time

The instantaneous wavenumber k(n) can be transformed as

k(n) = −k0 cos
γn
y + γn

z

2
def
= −k0 cos γ̃n.

This is similar to the physical Doppler effect:

ω − ω0 = ω0
v

c
cos γ.

Hence, the linear variation of k(n) can be attributed to a Doppler
effect in slow time n, and we can write:

WA(y, z) =
∑

n
e−2ik0 cos γ̃n(y1−z1) =

∑
n

e−2iω0 cos γ̃n(y1−z1)/c.

There is no velocity factor in the slow time Doppler effect, because
everything can be thought of as taking place simultaneously.
The geometric factor cos γ̃n is basically the same as that from the
physical Doppler effect (or the Doppler effect in fast time).
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Signal compression in the azimuthal direction

Compression ratio (or TBP) of the actual chirp is the ratio of its
length to the range resolution:

τc
∆R

=
Bτ
π
� 1.

It quantifies the improvement due to phase modulation.
For the chirp in the azimuthal direction we have:

LSA

∆A
=

2L2
SA
λ0

1
R
� 1,

where λ0 = 2πc
ω0

is the central carrier wavelength.
Why is this quantity (azimuthal compression ratio)� 1?

Because
2L2

SA
λ0

is the Fraunhofer distance of the synthetic array.
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Ionospheric distortions of SAR images

EM waves in the ionosphere are subject to temporal dispersion:
I vgr < c — group delay;
I vph > c — phase advance;
I The duration τ of the chirp and its rate α change.

Mismatch between the received signal and the matched filter.
Can be reduced by adjusting the filter — real-time TEC/gradients
needed — can be obtained with the help of dual carrier probing:

I Correction is more involved than in the case of Doppler;
I Correction is efficient if the moments don’t vary over the image.

However, the ionosphere is a turbulent medium.
Synthetic aperture may be comparable to the scale of turbulence.
Parameters of the medium will fluctuate from one pulse to another:

I Using a single correction may still leave room for mismatches.

One needs to quantify the image distortions due to turbulence:
I How can one “marry” the deterministic and random errors?
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Monostatic broadside stripmap SAR
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Recalling the math of transionospheric SAR

Convolution representation of the image (requires linearity):

I(y) =

∫
ν(z)W(y, z)dz.

The imaging kernel (or GAF — generalized ambiguity function):

W(y, z) =
∑

n

e−2iω0Tn
ph

∫ τ/2

−τ/2
e−4iα̃nTn

grtdt,

where Tn
ph, gr = Tph, gr(x

n,y, ω0)− Tph, gr(x
n, z, ω0) and

Tph, gr(x, z, ω0) =

Rz∫
0

1
vph, gr(s)

ds ≈
Rz∫

0

1
c

(
1∓1

2
4πe2

meω2
0

Ne(s)
)

ds =
Rz

v̄ph, gr
.

Factorization:

W(y, z) ≈ τNsinc
(B(y2 − z2) sin θ

v̄gr

)
sinc

(ω0(y1 − z1)LSA

R v̄ph

)
.
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In the presence of turbulence

The electron number density: Ne = 〈Ne〉+ µ(x), 〈µ〉 = 0.
The travel times become random:

Tph, gr(x, z, ω0) =
Rz

v̄ph, gr
∓ 1

2c
4πe2

meω2
0

Rz∫
0

µ(x(s))ds ≡ Rz

v̄ph, gr
∓ ϕ

2c
.

Accordingly, the GAF also becomes random (stochastic):

W ′(y, z) =
∑

n

e−2iω0T′n
ph

∫ τ/2

−τ/2
e−4iαT′n

gr tdt,

where

T ′nph, gr =
Rn
y

v̄ph, gr
− Tph, gr(x

n, z, ω0) =
Rn
y − Rn

z

v̄ph,gr
± ϕn

2c
.
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Statistics of propagation

Correlation function of the medium (turbulent fluctuations):

V(x′,x′′)
def
=
〈
µ(x′)µ(x′′)

〉
= 〈µ2〉Vr(r) = M2〈Ne〉2Vr(r),

where Vr(r) ≡ Vr(|x′ − x′′|) decays rapidly, e.g., Vr(r) = e−r/r0 .
Other short-range correlation functions include Gaussian and
Kolmogorov-Obukhov.
Correlation radius of the medium (outer scale of turbulence):

r0
def
=

1
Vr(0)

∫ ∞
0

Vr(r)dr.

Variance of the eikonal quantifies the magnitude of phase
fluctuations:〈

ϕ2〉 =
( 4πe2

meω2
0

)2
M2
∫ Rz

0
〈Ne(h(s))〉2 ds · 2

∫ ∞
0

Vr(r) dr.

Covariance of the eikonal is of central importance: 〈ϕmϕn〉.
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Covariance of the eikonal (phase path)

Affected by statistics of the medium and propagation geometry:

〈ϕmϕn〉 =
( 4πe2

meω2
0

)2
RM2

1∫
0

du 〈Ne(h(uR))〉2
∞∫
−∞

dsVr
(√

u2|xm − xn|2 + s2
)
.

A common misconception: not accounting for the ionopause.

a f	
  edc	
  b

z

pR RR
r0

rbe

r0

ionosphere	
  

ionopause	
  

With no ionopause, 〈ϕmϕn〉
decays slowly even if the
correlation function of the
medium is short-range.
With the ionopause, 〈ϕmϕn〉
is also short-range (like Vr)
and rϕ ∼ r0.
Why is 〈ϕmϕn〉 important?

S. Tsynkov (NCSU) Spaceborne SAR ICERM, October 18, 2017 25 / 37



Stochastic GAF

Factorization:

W ′(y, z) ≈ τsinc
(B(y2 − z2) sin θ

v̄gr

)
·
∑

n

e−2iω0T′n
ph

For narrow-band signals, the factorization error is small: O( B
ω0

).
The effect of turbulence on the imaging in range can be shown to
be negligibly small compared to its effect on imaging in azimuth.
What remains is the sum of random variables over the array.
Why is it important to know how rapidly the random phase
decorrelates along the array?

I Random phases are normal due to the central limit theorem.
I Terms in the sum are log-normal: Uncorrelated⇔ Independent.

Statistical dependence or independence of the constituent terms
directly affect the moments of the stochastic GAF.
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Errors due to randomness
The mean of the stochastic GAF reduces to the deterministic GAF
(subject to extinction ∝ e−π〈ϕ

2〉/λ2
0):

I The deterministic errors include plain SAR, ionosphere, Doppler...

The errors due to randomness are superimposed on the above:
I When rϕ � LSA and

√
〈ϕ2〉 � λ0 (small-scale turbulence with small

fluctuations), they are estimated by variance of the stochastic GAF:√
σ2

W′
A

=
√

2
ω0

c
N

√
〈ϕ2〉

LSA/rϕ

I σ2
W′

A
quantifies the difference between stochastic and deterministic

GAF and accounts for the variation within the statistical ensemble.

Yet mechanically adding the two types of errors may be ill-advised:
I In reality, there is a single image rather than an ensemble;
I For rϕ � LSA, randomness manifests itself within a single image;
I For rϕ � LSA, random phases ϕn within the array are identical:

F
√
σ2

W′
A

is large, yet it basically becomes irrelevant.
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Errors due to randomness (cont’d)

The case rϕ � LSA is very similar to fully deterministic:
I Image distortions due to randomness can be characterized directly

in terms of the azimuthal shift and blurring (expected values),
F NOT as the difference between the stochastic and deterministic GAF;

I Blurring is significant only for much larger fluctuations than the shift:
F One can have a shifted yet otherwise decent (low blurring) image

even for
√
〈ϕ2〉 � λ0.

On the other hand, in the case rϕ � LSA,
√
〈ϕ2〉 � λ0 (small-

scale turbulence with large fluctuations), the image is completely
destroyed [Garnier & Solna, 2013].
No “continuous transition” (yet) between the small-scale case and
large-scale case.
Correction of image distortions due to turbulence is a major issue:

I Current analysis is aimed only at quantification of distortions.

S. Tsynkov (NCSU) Spaceborne SAR ICERM, October 18, 2017 28 / 37



Why do we need new models for radar targets?

The image I(y) is a convolution-type integral:

I(y) =

∫
ν(z)W(y, z)dz,

where ν characterizes the target, and W — the imaging system.
The reflectivity ν(z) is either phenomenological or physics-based.
Scattering must be linear with respect to the target properties ν:

I ν(z) is proportional to the variation of the local refractive index;
I Assumption: Weak scattering⇔ the first Born approximation.

Scattering occurs only at the surface of the target; dz = dz1dz2.
I Why? — microwaves do not penetrate under the surface.

Weak scattering is inconsistent with no-penetration conjecture.
A flat uniform target won’t backscatter...

I What is the actual observable quantity in SAR?
I How is it related to the local properties of the scatterer?
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Scattering about a dielectric half-space

Scattering off a material half-space with a planar interface:

n2(z) = ε(z) =

{
1, z3 > 0,
ε(0) + ε(1)(z1, z2), z3 < 0,

where |ε(1)| � ε(0) = const. The background permittivity ε(0) can
be large, so the scattering is not necessarily weak.
The method of perturbations:

u(t, z) = u(0)(t, z) + u(1)(t, z),

where |u(1)| � |u(0)|.
Linearization: higher order terms ∼ ε(1)u(1) are dropped.
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Schematic for the scattering geometry
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Solution for the scattered field

The field is governed by the wave (d’Alembert) equation:(n2

c2
∂2

∂t2 −∆
)

(u(0) + u(1)) = 0.

The field and its normal derivative are continuous at the interface.
I Interface conditions hold separately for the zeroth and first order.

Zeroth order solution by Fresnel formulae.
I May involve strong refraction.

First order solution using the separation of variables rendered by
Fourier transform in time t and along the surface (z1, z2).
Uncoupled ODEs in the direction z3 are solved in closed form.
The inverse transform is done by stationary phase; it accounts for
any reflection angles φ and ψ if the distance to the surface is large.
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Surface retarded potential

Scattered field in the time domain:

u(1)(t,x′) =
M(ε(0), θ, φ)

4π2RR′c

∫∫
P′
(

t − Rz + R′z
c

)
ε(1)(z1, z2)dz1dz2,

where
M = cos θ cosφ(

cosφ+
√
ε(0)−sin2 φ

)(√
ε(0)−sin2 φ+

√
ε(0)−sin2 θ

)(
cos θ+

√
ε(0)−sin2 θ

) .

It is a surface retarded potential obtained with no inconsistent
assumptions and no use of the first Born approximation:

I Convolutions are two-dimensional by design;
I The scattering is linear yet not necessarily weak.

For backscattering (x = x′), the previous expression simplifies:

u(1)(t,x) =
M(ε(0), θ, θ)

4π2R2c

∫∫
P′
(

t − 2
Rz

c

)
ε(1)(z1, z2)dz1dz2.
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What is the SAR observable quantity?

The reflection coefficient for monostatic imaging (as P′ ≈ −iω0P):

ν(z1, z2) = −iω0
M(ε(0), θ, θ)

4π2R2c
ε(1)(z1, z2).

Yet is it the reflectivity ν(z1, z2) itself that we actually see?
The scattered field is given by “almost” the Fourier transform at
the Bragg frequency kθ = −2k0 sin θ (Rz is linearized):

u(1)(t,x) ≈ − iω0
M(ε(0), θ, θ)

4π2R2c

∫∫
P
(

t − 2
Rz

c

)
ε(1)(z1, z2)dz1dz2

∝ − iω0
M(ε(0), θ, θ)

4π2R2c

∫∫
A
(

t − 2
Rz

c

)
e2ik0z2 sin θε(1)(z1, z2)dz2dz1.

The true mechanism of surface scattering is resonant.
If ν(z1, z2) has no spectral content at or around kθ, then there is no
backscattering, and no monostatic SAR image can be obtained.
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Physical interpretation of SAR observables
The image:

I(y) =

∫
dz1

∫
dz2 WA(y1, z1)WR(y2, z2)νnew(z1, z2).

νnew is obtained by shifting and band limiting the spectrum of ν:
ν̂new(z1, k) = ν̂(z1, k + kθ)χβ(k),

where kθ = −2k0 sin θ is the Bragg frequency, and β = 2B sin θ
c .

νnew varies slowly in space, on the scale & ∆R = πc
B , because all

its spatial frequencies 6 β
2 � |kθ| ⇔ B/c� k0 or B� ω0.

Alternatively, the observable quantity νnew(z1, z2) can be derived
as a window Fourier transform (WFT) of ν:

νnew(z1, z2) =
τ sin θ

∆R

∫
WR(z2 − z′)ν(z1, z′)e−ikθz′dz′.

νnew(z1, z2) is a slowly varying amplitude of the Bragg harmonic
eikθz2 in the spectrum of ν computed on a ∆R size sinc (·) window.
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What does it mean for imaging?

The actual quantity reconstructed by SAR is not the reflectivity per
se but rather its particular slowly varying spectral component.

I Yet the reconstruction itself is enabled by the presence of high
frequencies.

Implications for angular coherence in the case of wide apertures:
I The WFT along different directions for different antenna positions.

Vector extension is possible that would account for polarization.
Anisotropic and/or lossy materials can be considered.
Other models include Leontovich and rough surface.
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Thank you for your attention!
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